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Abstract 

In the limit of unrestricted resolution, with Friedel 
pairs as the only coincidences, phase angles or signs 
can be determined uniquely from powder diffraction 
data using multiple-wavelength techniques. For a cen- 
trosymmetric structure one anomalously scattering 
species of atoms and data taken at two h's are 
sufficient. In the acentric case one needs two different 
anomalous scatterers and measurements at three )t's. 
The anomalous scatterers can be localized from 
difference Patterson maps: their peaks can be dis- 
criminated against the peaks due to non-anomalous 
scatterers. 

I. Introduction 

Anomalous scattering effects in X-ray powder data 
have been taken into account so far mostly as correc- 
tions of the form factor for the profile refinement, 

0108-7673/90/120988-05503.00 

e.g. in the program by Young, Mackie & Von Dreele 
(1977). In a powder diagram reflections H and - H  
coincide exactly. Bijvoet differences as well as Bijvoet 
ratios can therefore not be determined from powder 
data, and so all methods of phase determination based 
on either quantity cannot be applied. Another prac- 

tical restriction of the powder method at conventional 
X-ray sources has been the limited resolution which 
causes, in addition to the Friedel pairs, further coin- 
cidences. The availability of high-resolution powder 
diffractometers at synchrotron X-ray sources has 
improved the experimental situation in several 
respects: 

(i) The resolution has been improved substantially 
above conventional diffractometers: line widths 
(FWHM) of A (20)--<0.025 ° in 30-<20-<80 ° have 
been reported by Wroblewski, Ihringer & Maichle 
(1988). Reinhardt (1989) found these line widths 
smaller by a factor -'-5 than corresponding values 
from a high-resolution Guinier diffractometer. 

© 1990 International Union of Crystallography 
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(ii) The continuous spectral distribution of a syn- 
chrotroh source makes it necessary in any case to 
select one energy/wavelength by a monochromator, 
and the inherent good collimation of the source 
(~0'2)1/2"0"1 mrad provides for a narrow spectral 
resolution of the monochromatic beam as long as 
monochromator crystals with a sufficiently small 
mosaic angle r/ are used. So one of the components 
h /n  in the monochromatic beam may be chosen to 
be close to the absorption edge of the atoms in the 
sample in many cases. 

(iii) Ideal crystals are not needed. Freund (1988) 
discusses the possibilities of applying mosaic crys- 
tals as monochromators at synchrotron sources. 
Schneider, Goncalves, Rollason, Bonse, Lauer & 
Zulehner (1988) report the improvement of the reflec- 
tivity of silicon crystals containing small amounts of 
oxygen. 

(iv) A h /n  contribution in the polychromatic 
'monochromatic' beam may be used also as a non- 
resonant reference radiation. Polychromatic powder 
diagrams have been taken simultaneously at up to 
three different wavelengths by Limper, Ihringer, 
Knorr, Prandl & Wroblewski (1989). 

With these experimental advances at hand 
multiple-wavelength methods for powders will be 
discussed in the present paper for phase-angle deter- 
mination as well as for Patterson methods. For the 
single-crystal case, phase-angle determination with 
two wavelengths has been reviewed recently by Klop, 
Krabbendam & Kroon (1989). Fischer (1987) dis- 
cusses difference Patterson functions calculated from 
single-crystal data taken at three or four wavelengths 
as the 'lambda technique'. Ramachandran & 
Srinivasan (1970) cover the earlier literature in a 
comprehensive way. 

a.s.,a.s.a.,a.s.g 

g * f  
£ - fo ,  

L = fo,, + aL+ iz~ 

fo,,fo~ 
8~ ,2 a,,2 =A + _ ~  

~ = x . T  

rsi, r~,~ 

II. Notation, abbreviations 
anomalous scatterer, anom- 
alously scattering atom, 
anomalously scattering atom 
of the chemical species tr 
convolution of g and f 
form factor for normal scat- 
terers; s = 1 , . . . ,  N 
form factor for the a.s. of  type 
tr; o '= 1 , . . . , , ~  
high-energy limit of  the form 
factors: E ~, EK 
squared 'length' of  the 
anomalous contribution to 
f~. A ' ,  A~ and 8~, depend on 
h 
isotropic temperature factor 
for normal and anomalous 
scatterers 
the caret ~ above a variable x 
stands for the product x.T. 
Here x =fo~, fo,,, A ' ,  A'~, 8~ 
position vectors for normal 
and anomalous scatterers, 
respectively 

Fo± - F ( ± H )  = A +  iB 
= IFo l (cos  ~ +  i sin q~) 

Fo± = F,,(+H) 

R~, +/J,, = L~, (cos ~ ,  + i sin ~o.) 

= ~ exp 2zriHr~,j 
j = l  

2 _ R 2  + 2 L~, - J~, 
tan ~ = JJR~ ,  

N~ 

P 
PKcr, Ps 

to=lFo+12 +lFo_l 2 

L =  IF,,.+I2+ IFo._l 2 

Vo(u) 

v,,(u) 

H,,(u) 

~_{...} 

structure factors in the high- 
energy limit 
structure factors with anom- 
alous contribution due to a.s. 
o" 

trigonometric part of  the 
structure factor for the a.s. 
atoms 

L~---0 
~ :  phase angle of  the a.s. 
atoms 
number of sites occupied by 
the a.s. tr 
electron density of  the crystal 
atomic K-shell density, total 
atomic electron density 
intensity = integrated intensity 
of a powder line IHI corrected 
with the appropriate Lorentz, 
polarization and absorption 
factors. See § VII, Scaling. 
Patterson density of the crys- 
tal structure calculated from 
non-resonant intensities. 
Patterson density of the crys- 
tal structure from data con- 
taining contributions due to 
a . s .  Or. 

Patterson density of  the a.s. cr, 
calculated for pointlike 
atoms. 
Fourier inversion 

lIl. The calculation of phase angles from powder data 

In the high-energy limit E~oo,  h ~ 0  with no 
anomalous dispersion effects the structure factors are 
given by 

A 

Fo+ = ~, fos exp (+2 7riHrsi) 
si 

=]Fo] cos ~ +  iJFo[ sin ~. (1) 

Here the quantities los are form factors including an 
(isotropic) temperature factor 

fo~=fos.r~. (2) 

The same notation will be used for the anomalous 
parts A ' , / 1  ~. Close to the K, L , . . .  absorption edges 
of the atoms of type o- the structure factor is modified 
to 

F~,±=Fo±+(,~'~+iA~)(R~,±iJ,,). (3) 

In a powder diagram the intensities without and with 
the inclusion of anomalous contributions,/o and/~ ,  
respectively, are 

io=2lFol 2 (4) 

I~ = 2]Fol={ 1 + 2z~'(RdlFol) cos 4~ 
A I 8,,(L,,/IFol2)}. (5) +2A,,(J, , / IFol)sin ¢ '+  "2 2 

Io and I~ are directly accessible from the scaled 
(§ VII) integrated intensities of single powder lines 
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after the usual corrections: Lorentz, polarization 
factors, multiplicity and absorption. We write R~, and 
J~, in terms of L~ and the angles q t  and obtain the 
differences 

L-Io=41FoIL~" (cos aF= cos q~+sin qt, sin @) 
^2 2 +26~L=. (6/ 

We assume at the present stage that the atomic posi- 
tions r~i are known (see § VI for the determination 
of r~i). With this assumption the L~ and q t  can be 
calculated. 

Defining intensity ratios 

r.=I,~/lo, (7) 

we arrive from (6) at an equation for the differences 
between the unknown and the known angles, q~ and 
q t ,  respectively: 

cos ( ~ -  q,~)= x~ (8) 

with 

leo] ( ^2 L2 '~ 
Xo,=2Lo~ . r~-l-6,~lFo12]. (9) 

IV. Centrosymmetric structures 

For centrosymmetric structures the problem sim- 
plifies appreciably, since only the phase angles 0 and 
rr may occur. Therefore 

c o s q ~ = s = + l  c o s ~ , ~ = s ~ , = + l }  
sin q~=0 sin ~ = 0 .  . (10) 

J 

The signs s = s(+H) are given from (9) by 

s =2R~z~" r ~ - l -  IFol " 

On the r.h.s, of (11) all quantities are known either 
from tables (A', 82) or from two measurements at )to 
and )t~. The unknown temperature factors T~ con- 
tained in z~" and ~2 may be approximated by an 
overall temperature factor which can be estimated 
by, for example, Wilson's method. For a centro- 
symmetric structure the phase or sign problem can, 
therefore, be solved uniquely from two powder 
diagrams taken at the appropriate wavelengths using 
only one type of a.s. atom. Actually, (11) can be 
simplified further by using only the signs of the rel- 
evant terms: 

A 
s - sign (R,,) sign (A ' )  

^2 2 xsign[r~-l-6o,(R,fflFol2)]. (12) 

This simplification can, of course, be expected to give 
correct results only as long as Is]-~ 1 from (11). With 
only one a.s.a, located in the inversion center 1 at 
r=r~,  =0  one further obtains sign (R=,)= 1. 

V. Acentric structures 

It is clear from (8) that with a single type of a.s. o-= 1 
the phase angles are not unique since 

• = ~= + arc cos (X~). (13) 

If only one a.s. atom is present in the unit cell we are 
free to choose its position in r~= 1 = 0. Then all ~ = 0 
and • = +arc cos X~,. In this case only the real parts 
of the structure factors 

A(n)--IFo(n)lcos q' (n)  (14) 

are uniquely determined from the experimental data 
and may be used for the calculation of the superim- 
posed Fourier densities/5 with 

/5(r) = p(r) + p ( - r ) .  (15) 

In other words, with only one a.s. a centrosymmetric 
solution made up of the density and its inversion 
image is obtained for an acentric crystal. 

The complete solution of the phase problem in the 
acentric case can be obtained if at least two (or more) 
different types of a.s. atoms are at hand. In this case 
(6) and (9) can be expressed as 

cos qt,~ cos q~ + sin ~,~ sin • = X,~ o-=1,2  (16) 

which can be solved for sin q~ and cos q~ provided the 
determinant of (16), det =sin ( ~ 2 - q t l ) ,  is nonzero: 

c ° s ~ l  sin = [sin (qt2-  ~ l ) ] - I  

sin 1/"2 -s in  ~ l l  
- - C O S  l / t 2  C O S  1/'¢1 [ IXl l  " X2 (17) 

X 

For three or more different types of a.s. atoms (16) 
is overdetermined. In this case a least-squares sol- 
ution is appropriate. It should be emphasized that 
varying za' ,  A ~ of only one type of a.s. by fine tuning 
of A,~ close to the absorption edge would make the 
matrix of (16) singular with no chance for a solution 
for both cos q) and sin ~. 

VI. Patterson maps from powder data: the localization 
of the anomalous scatterers 

From a completely resolved powder diagram taken 
in the high-energy limit we can calculate the usual 
Patterson density by Fourier inversion: 

Po(u) = Y. IFo(H)[ ~ cos (27rnu) 
IHI 

= Z  Io(H) cos 2"n'Hu=-- ~-{Io}. (18) 
IHI 

We rewrite the intensity differences (6) slightly: 
A ^ 

I,~- Io = 4[A(H)A 'R~(H)  + B(H) A'J~(H)]  
2 2 +26~L~(H). (19) 
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Since A(H)R=(H),  B(H)J~(H) and L2(H) are sym- 
metric under the inversion H ~ - H ,  the Fourier inver- 
sion of (19) is real, and contains essentially two 
different contributions T,~(u) and T~2(u): 

~;_{I~- I o } -  Po,(u)-  Po(u) = T~,l(u) + To,2(u) (20) 

T~I(u)=;~_{4z~ ' [A(H)R~(H)+B(H)J~(H)]}  (21) 

T~2(u) = ;~_{2~2LE(H)}. (22) 

^2 2 In (22) the terms 28~L~(H) are the powder intensities 
of a - fictitious - structure consisting only of a.s. 0". 
In addition, because of the ~ term, only the K- (or 
L-, depending on A~) shell scattering contributes. 
Therefore, 

TorE(u) --(PKcr * P x c r ) *  /-/or(U). (23) 

Since R~ +/J~ is the structure factor of the anomalous 
structure taken with point-like atoms, H~(u) is made 
up of 8 peaks. The peaks in T,~E(U) are autoconvol- 
utions of the K- (L-)shell densities. 

To understand T~(u) we rewrite the r.h.s, of (21) 

A ' ( A R , ~ +  BJ,~) 

= z~'~ fos(COS 27rnrs/COS 27rnr~,j 
sij 

+ sin 2wHr~ sin 2~rHr~,j) 

= ,~" Y~ fos cos 27ra(rsi-roj) .  (24) 
sij 

z~" and fo~ are essentially Fourier transforms of the 
K (L) shell and of the total atomic electron densities, 
pr~ and p~ respectively. Since the inner shells are 
much less extended than p~ we may approximate 

AI A 

~;_{A~,fo~} = PK~, * P~ ~-- n~p~, (25) 

where n~ is the number of electrons in the K (L) shell. 
Combining (21), (24) and (25) we arrive at 

T~l(u) = 4 n ~  p~ * l{/~[u- (r~,- r~j)] 
sij 

+ 8 [u+  ( r ~ -  roq)]}. (26) 

T,,~(u) has atomic peaks with the shape p~ at 
positions + (r~ - roj) or, expressed differently, 

T~l(u) = 2n~ ~ p ( u -  roj) + p _ ( u -  r~j) (27) 
J 

where p ( . . . )  is the electron density of the complete 
crystal and p_( . . . )  its inversion image. Every a.s. 
atom introduces in T,,l(U) one image of the electron 
density shifted by (-roj)  together with its inverse 
shifted by +roj; that is, in both images the a.s. atom 
creating the image occurs at the origin of the coor- 
dinate system. 

In order to make the discussion more transparent 
we analyse the centrosymmetric and the acentric case 
separately. 

( a ) Centrosymmetric structures 

( aa) Only one a.s. per unit cell. In this case r~=l.~ 
coincides with one of the inversion centres and defines 
the origin. T~2(u) contains only the trivial centre peak. 
J;_(I~ - Io) = T~I + T~2 is, up to a scale factor, iden- 
tical with the complete electron density with one 
minor exception: the peak at u = 0 is the superposition 
of pr~, and p=, the K (L) shell and the total electron 
density of the anomalous scatterer. 

(ab) Two a.s. at positions r ~  = +r~ and r , r2---r~ 
related by an inversion centre. J ;_{I~-Io}  contains 
two sharp peaks at +2r~ [interatomic vectors for a.s. 
atoms due to T~E(U)] together with two copies of p(r) 
having normal atomic peaks Ps shifted by +r~. The 
problem of structure determination is solved as soon 
as the narrow peaks at +r,~ have been identified. If  
this is not possible, the autocorrelation function of 
;~_{ I~ - / o}  may be used: this function will show large 
peaks at shift vectors +2r~. The size and shape of 
these peaks are identical with the centre peak at 0. 

( b ) Acentric structures 

(ba) One a.s. atom o f  one kind per unit cell. In 
~ - ( /~  - / o )  the Ttr 2 part shows only the centre peak. 
In T,~l(u) the density p with r~l as the origin and its 
inverse p_ with the centre of inversion at r~l = 0 occur. 
This result is familiar from and identical with image 
seeking in a Patterson map with one (known) inter- 
atomic vector only. 

( bb ) Two a.s. o f  the same kind at r~1,1 and r~rl,2 per 
unit cell. - t - ( r c r l , l - r ~ l , 2 )  may be found from Tcr2(u) ,  
but otherwise the situation (ba) occurs again with 
two shifted images and their inverses. 

(bc) Two different a.s. o f  two kinds occurring with 
one atom per cell at r~1,1 and r~2,1. T~l,2(u) and T~E,E(U) 
are trivial again: only a sharp peak at u =0.  In a 
(cross) convolution T~l,1 * T~2,1 two large peaks will 
occur at +(r~l ,~-  rcr2,1) = +d. With d given one is free 
to choose, for the phase-angle calculation, a new 
origin for the structure, e.g. either r,,~,l = 0 and rotE,1 = d 
or r~,l  = - d / 2  and r~r2,1 = + 1 1 / 2 .  From either choice 
the angles ~1--  ~ ( H ) =  27rHr~1.1 and ~2-= ~ 2 ( H ) =  
2wHr~2,1 in the system of equations (16), (17) are 
defined, and the phases ~ ( H )  can be calculated 
uniquely. One has of course to bear in mind that the 
two selected origins, either (a)  rcrl.1----0 or (/3) r~1,1 + 
r~,2,1 = 0 ,  will give two different, internally consistent, 
sets of phases which are related by 

• ,,(H) = ~ ( H )  + zrHd. (28) 

The choices of signs suggested here for case (a )  or 
(/3) will select one out of the two possible absolute 
configurations of the crystal structure which are 
compatible with the powder data. 

(bd) We will not discuss any more complicated 
situations in detail. We should, however, emphasize 
that in the general case with two groups 0-1 and 0" 2 
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containing Z1 and "~2 a.s. atoms, respectively, the 
analysis is simplified appreciably if the structural 
fragments 0"1 and 0"2 are known a priori, e.g. from 
chemical considerations. I.a this case the well known 
Patterson search routines are at hand for the analysis 
of ,@_{I~ - Io}. 

VII. Scaling 

The intensity ratios r,, and the differences I ~ -  Io 
defined in (7) and (19), respectively, are accessible 
from the experimental data after scaling: 

I t r =  ~-EXP qM ~ (29) 

where IEXP is the observed integrated powder line 
intensity after Lp and absorption correction (see § II) 
and q~ takes into account all instrumental effects: 
spectral density, wavelength dependence of the 
detector efficiency etc. Absolute intensities are not 
required, either for the phase angles or for the Patter- 
son maps. All intensities may, therefore, be referred 
to one wavelength, e.g. to ;to. So we may put qo = 1. 
We discuss briefly two methods: intrinsic and external 
scaling. 

Intrinsic methods use only data of the sample itself. 
A simple estimate is 

:x /z " ,EX  
qo - ~ o ~or (30) 

important in accurate data, as shown by Zachariasen 
(1965) in the case of quartz. 

VIII. Concluding remarks 

Polychromatic data from high-resolution powder 
patterns in which Friedel pairs (+H) are the only 
systematic coincidences can be used in principle for 
a complete solution of the phase problem. In centro- 
symmetric structures two data sets, one with no 
anomalous effects and one having contributions from 
one a.s., are sufficient for the localization of the a.s, 
as well as for the sign determination. With only one 
a.s. located at an inversion centre the Fourier density 
of the electronic structure is given by the difference 
of the two Patterson densities P~(u)-Po(u).  In the 
acentric case one needs at least three different data 
sets: one with no a.s. effects (the high-energy limit), 
and two containing contributions from two different 
types of anomalous scatterers. Again the simplest case 
occurs if only one atom of the a.s. 0.1 and 02 is present 
in the unit cell. The present paper applies, strictly 
speaking, to the triclinic system. Higher symmetries 
will be treated separately. 

It is a pleasure to thank Dr J. Ihringer for his 
suggestions about the scaling problem. This investiga- 
tion was supported by the BMFT under project no. 
03-PR2 TUE 3 and by the VDI under project no. 
13 N 5482/0. 

where the sums extend to the highest-order reflection 
HM common to both spectra. A more detailed anal- 
ysis shows that wavelength-dependent corrections 
depending on IHMI have to be included. If the overall 
contribution of the a.s. atoms to the intensities is small 
then a better choice is to include in (30) only a few 
strong low-index intensities. 

External scaling uses a standard material either 
added to the sample or prepared on a separate sector 
of the surface of a rotating sample holder as suggested 
by Ritter, Maichle, Eder, Ihringer & Prandl (1989). 
In the latter case sample and reference data are reg- 
istered separately: the rotation of the sample holder 
is used for gating two electronic counters and any 
overlap between sample and reference reflections is 
avoided. The possibility of anomalous contributions 
to the reference intensities has, of course, to be taken 
into account. Even for standards containing only 
low-order atoms these contributions may become 
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